
A WHILE instruction defines a loop which is a control flow statement that allows

code to be executed repeatedly as long as a given test is true. In other words, it is

a facility offered to the programmer to flow control and to instruct the computer to

repeat a task upon a given condition.

A While– Loop can be represented by this pseudo code:

WHILE

(test)

DO

(list of actions)

Or by this schema:

Explaining the scheme: The while construct allows the repetitive execution of a list

of actions, as long as the test controlling the while loop evaluates to true. If the test

evaluates to false, the while loop will be terminated and usually another block of

commands outside the body of the while- loop will be executed.

There is no limit to the amount of instructions put into a while. Interestingly, one or

several IF/THEN/ELSE instructions can also be inserted instead of an action if

there is a need to do some test (s) when inside the loop.

While– Loops… What are these?

Interesting points:

 What is a While– loop?

 Why and when do we need it?

 Examples

Repeating an action : loops

2

2
-0

6
-2

0
12

A while loop allows us to build elegant and efficient scripts,

reducing significantly the number of commands of our script.

For example, consider the following scenario: ‘a venue is on

and hundreds of visitors arrived. You would like to offer

handmade cookies to them while entering the area. You

have plenty of cookies and a queue full of visitors

In order to implement this script you will need a while loop.

The script in pseudo– code:

While (a visitor is about to enter) {

Grab a cookie

Offer the cookie to the visitor

}

 The script in a scheme:

The same scenario without the While– loop would be

problematic and would look like this:

IF (a visitor is about to enter) {

Grab a cookie

Offer the cookie to the visitor

}

IF (a visitor is about to enter) {

Grab a cookie

Offer the cookie to the visitor

}

IF (a visitor is about to enter) {

Grab a cookie

Offer the cookie to the visitor

}

IF (a visitor is about to enter) {

Grab a cookie

Offer the cookie to the visitor

}

[...]

IF (a visitor is about to enter) {

Grab a cookie

Offer the cookie to the visitor

}

We will need as many IFs as the number of the visitors

that are in the queue.

We can easily realize that the While loop is a powerful

structure that allows the programmer to flow control and

to achieve repeatedly execution of actions.

consequent action. Once

the consequent action is

dragged, another conse-

quent action box appears

(you can have up to 8 box-

es) along with a cancel but-

ton if no further action is

required.

In the example on the right we

have inserted 2 boxes for actions.

We could have inserted more or

less in accordance with our needs.

In the cMinds demon-

strator, the WHILE code

automatically adapts to

its environment. When

the WHILE is drag and

dropped, automatically a

field to put the test ap-

pears, guiding the user.

Once the test is dragged

in place, a DO image

appears immediately

with a field to put the

Why do we need While– loops?

While loops in cMinds...

Repeating an action : loops
R

e
p

e
a

ti
n

g
 a

n
 a

c
ti

o
n

 :

The reader is also encouraged to study material available online at: http://cminds.org/documents/Supporting%20Material%202_509998-

2010-COMENIUS.pdf

This script is used for placing 50 bottles on a shelf. While bottles are not zero

(meaning: bottles exist), a bottle is grabbed and placed on the shelf and the total

number of bottles is reduced by one.

So, the second time the number of the bottles will be 49, the condition will be

true and a bottle will be grabbed and placed on the self. The bottles will be 48.

Again the condition will evaluate to true; a bottle will be grabbed and placed on

the shelf and the total number of bottles will be 47…

When the bottles will be zero nothing happens and the script terminates.

Note: bottles ≠ 0 means that the number of bottles is not zero.

Look carefully the following script.

What is this script for?

bottles= 50

While (bottles ≠ 0){

grab a bottle

place it on the shelf

bottles= bottles -1

}

http://cminds.org/documents/Supporting%20Material%202_509998-2010-COMENIUS.pdf
http://cminds.org/documents/Supporting%20Material%202_509998-2010-COMENIUS.pdf

Tutorial area

Let’s consider the case where the user

wants to order the robot to pick an

apple from the tree and put it in the

basket below as long as the branch on

top of him has some ripe ones. To give

this instruction to the robot, the user

will have to do the following

The script ►►

Which is the while condition that eval-

uates to true or false? ▼

The apple is ripe

Graphical representation ▼

If we keep the same idea and decide not to use the
While– loop, we will end up with a script that includes
41 ‘move one step right’ actions. Here you can see the
inefficient script…and you can realize once again the
‘beauty’ and ‘dynamic functionality’ of the While– loop.

Math Activity

Consider the following scenario: The robot is on 5 and wants to

reach 46. Help the robot move on 46 (number– target).

We can solve the problems in various ways. We will here demon-

strate a solution that exploits While– loops.

Which is the while condition that evaluates to true or false? ▼

The robot is before the number– target.

The script ▼

Graphical representation of the solution ▼

Can you now give us an example from the tutorial area?

Can you now give us an example from the Math activity?

Repeating an action : loops

